Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling
نویسندگان
چکیده
The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material.
منابع مشابه
Plasma pyrolysis and gasification of plastics waste – a review
Plasma pyrolysis integrates thermo-chemical properties of plasma using pyrolysis process for safe disposal of solid wastes. It is an environment friendly technology to generate valuable byproducts by converting municipal solid waste, biomedical waste and hazardous wastes at 800-1000°C. Plasma Pyrolysis of plastic wastes generates pyrolysis gas, which can be utilized for energy recovery via diff...
متن کاملPhysical and chemical characterization of waste wood derived biochars.
Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, includin...
متن کاملCharacterization of nano-biocomposite films reinforced with nanofibrillated cellulose and montmorillonite as a potential application for Food packaging industry
In this study, polyvinyl alcohol- Nanofibrillated cellulose –Montmorillonite (PVA-NFC-MMT)and Ethylene-vinyl acetate- Nanofibrillated cellulose –Montmorillonite (EVA-NFC-MMT) nanocompositescontaining 2% weight of NFC and MMT were prepared by melt blending method. Then, the effect ofNFC and MMT as reinforcing materials on biodegradability, morphology, and mechanical, thermal an...
متن کاملHydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations
Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids coul...
متن کاملThermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass
A detailed thermo-economic model considering different technological alternatives for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass is presented. First, candidate technology for processes based on biomass gasification and subsequent methanation is discussed and assembled in a general superstructure. Both energetic and economic models for biomass drying wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015